题目内容

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左右焦点分别为F1,F2,椭圆上存在点P,使得∠F1PF2=60°,则椭圆的离心率的取值范围是(  )
A.$({0,\frac{1}{2}}]$B.$[{\frac{1}{2},1})$C.$({0,\frac{{\sqrt{3}}}{2}}]$D.$[{\frac{{\sqrt{3}}}{2},1})$

分析 当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值,由此可得结论.

解答 解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:
∵存在点P为椭圆上一点,使得∠F1PF2=60°,
∴△P0F1F2中,∠F1P0F2≥60°,
∴Rt△P0OF2中,∠OP0F2≥30°,
所以P0O≤$\sqrt{3}$OF2,即b≤$\sqrt{3}$c,
∴a2-c2≤3c2,可得a2≤4c2
∴$\frac{c}{a}$≥$\frac{1}{2}$,
∵0<e<1,
∴$\frac{1}{2}≤e<1$.
故选:B.

点评 本题考查了直角三角形的三角函数和椭圆的简单几何性质等知识点,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网