题目内容

已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),求m的最大值。
m值等于36
f(1)=36,f(2)=108=3×36,f(3)=360=10×36
f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.
证明:n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k
=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k2?(k≥2)
f(k+1)能被36整除
f(1)不能被大于36的数整除,∴所求最大的m值等于36
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网