题目内容
已知数列
的前
项和为
,满足
,且
.
(Ⅰ)求
,
,
;
(Ⅱ)猜想数列
的通项公式,并用数学归纳法加以证明.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100492491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100507291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100554378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100570873.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100601486.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100616360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100632349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100679359.png)
(Ⅱ)猜想数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100492491.png)
(Ⅰ)
;
;
.
(Ⅱ)猜想数列
的通项公式为
.
下面用数学归纳法进行证明:
(1) 当
时,
,猜想成立.
(2) 假设当
时,
成立,
则当
时,由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111010381028.png)
由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211101147858.png)
两式作差得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111011621512.png)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111011941297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111012251167.png)
,所以猜想成立.
综上所述,对一切正的自然数都有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100928872.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100726619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100741594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100866611.png)
(Ⅱ)猜想数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100492491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100928872.png)
下面用数学归纳法进行证明:
(1) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100944336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100960972.png)
(2) 假设当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100975407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100991900.png)
则当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211101006454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111010221101.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111010381028.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211101131892.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211101147858.png)
两式作差得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111011621512.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111011941297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111012251167.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111012402223.png)
综上所述,对一切正的自然数都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211100928872.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目