题目内容

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

(1)-3.  (2) f(x)=.

解析试题分析:(1)因为f(x)为奇函数,且当x∈(0,+∞)时,f(x)=2x
所以f(log2)=f(-log23)=-f(log23)=-2log23=-3.   (6分)
(2)设任意的x∈(-∞,0),则-x∈(0,+∞),
因为当x∈(0,+∞)时,f(x)=2x,所以f(-x)=2-x
又因为f(x)是定义在R上的奇函数,则f(-x)=-f(x),
所以f(x)=-f(-x)=-2-x,即当x∈(-∞,0)时,f(x)=-2-x; (8分)
又因为f(0)=-f(0),所以f(0)=0,  (10分)
综上可知,f(x)=.  (12分)
考点:本题主要考查分段函数的概念,函数的奇偶性,指数函数、对数函数的性质。
点评:典型题,奇函数在x=0处有意义,则有f(0)=0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网