题目内容

【题目】已知抛物线y2=4x和点M(6,0),O为坐标原点,直线l过点M,且与抛物线交于A,B两点.
(1)求
(2)若△OAB的面积等于12 ,求直线l的方程.

【答案】
(1)解:设直线l的方程为x=my+6,A(x1,y1),B(x2,y2),

由x=my+6与抛物线y2=4x得y2﹣4my﹣24=0,显然△>0,

y1+y2=4m,y1y2=﹣24,x1x2=36

可得 =x1x2+y1y2=12


(2)解:SOAB= |OM||y1﹣y2|=3 =12 =12

∴m2=4,m=±2.

那么直线l的方程为x+2y﹣6=0和x﹣2y﹣6=0


【解析】(1)由x=my+6与抛物线y2=4x得y2﹣4my﹣24=0,利用 =x1x2+y1y2 , 求 ;(2)SOAB= |OM||y1﹣y2|=3 =12 =12 ,求出m,即可求直线l的方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网