题目内容
【题目】设、、是集合,称为有序三元组,如果集合、、满足,且,则称有序三元组为最小相交(其中表示集合中的元素个数),如集合,,就是最小相交有序三元组,则由集合的子集构成的最小相交有序三元组的个数是________
【答案】7680
【解析】
令S={1,2,3,4,5,6},由题意知,必存在两两不同的x,y,z∈S,使得A∩B={x},B∩C={y},C∩A={z},而要确定x,y,z共有6×5×4种方法;对S中剩下的3个元素,每个元素有4种分配方式,即可得到最小相交的有序三元组(A,B,C)的个数.
令S={1,2,3,4,5,6},如果(A,B,C)是由S的子集构成的最小相交的有序三元组,则存在两两不同的x,y,z∈S,使得A∩B={x},B∩C={y},C∩A={z},(如图),要确定x,y,z共有6×5×4种方法;
对S中剩下的3个元素,每个元素有4种分配方式,即它属于集合A,B,C中的某一个或不属于任何一个,则有43种确定方法.
所以最小相交的有序三元组(A,B,C)的个数6×5×4×43=7680.
故答案为:7680
练习册系列答案
相关题目