题目内容
【题目】如图,在三棱锥D-ABC中,底面ABC,为正三角形,若,,则三棱锥D-ABC与三棱锥E-ABC的公共部分构成的几何体的外接球的体积为( )
A.B.C.D.
【答案】B
【解析】
已知条件说明是正方形,记与的交点为,则是等腰直角三角形,是斜边的中点,是的外心,平面,设是的外心,即,则是的外接球的球心,由此可得球的半径,从而得球的体积.
如图,设与的交点为,三棱锥是三棱锥D-ABC与三棱锥E-ABC的公共部分.
设是中点,连接,在上,且,∵是正三角形,∴是的外心.
由底面ABC,得,又,∴是正方形,∴,即是等腰直角三角形,是的外心.
∵底面ABC,底面ABC,∴,
是正三角形,是中点,∴,,∴平面,即平面,∵是的外心,∴是的外接球的球心,
其半径为,球体积为.
故选:B.
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;
(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.
附:.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中,.
根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
根据的判断结果及表中数据,建立关于的回归方程;
已知这种产品的年利润与、的关系为.根据的结果回答下列问题:
年宣传费时,年销售量及年利润的预报值是多少?
年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:
,.