题目内容

【题目】《山东省高考改革试点方案》规定:从年高考开始,高考物理、化学等六门选考科目的考生原始成绩从高到低划分为八个等级.参照正态分布原则,确定各等级人数所占比例分别为.选考科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则分别转换到八个分数区间,得到考生的等级成绩.

某校级学生共人,以期末考试成绩为原始成绩转换了本校的等级成绩,为学生合理选科提供依据,其中物理成绩获得等级的学生原始成绩统计如下

成绩

93

91

90

88

87

86

85

84

83

82

人数

1

1

4

2

4

3

3

3

2

7

(1)从物理成绩获得等级的学生中任取名,求恰好有名同学的等级分数不小于的概率;

(2)待到本级学生高考结束后,从全省考生中不放回的随机抽取学生,直到抽到名同学的物理高考成绩等级为结束(最多抽取人),设抽取的学生个数为,求随机变量的数学期望(注: ).

【答案】(1)0.29 (2)见解析

【解析】

1)设物理成绩获得等级的学生原始成绩为,其等级成绩为,由原始成绩与等级成绩的转换公式得到关于 的关系式,即可计算出等级分数不小于的人数,利用古典概型即可计算出恰好有名同学的等级分数不小于的概率。

(2)由题意得,随机抽取人,等级成绩为的概率为,然后列出学生个数的分布列,即可计算数学期望。

解:(1)设物理成绩获得等级的学生原始成绩为,其等级成绩为.

由转换公式,得.

,得.

显然原始成绩满足的同学有人,获得等级的学生有人,

恰好有名同学的等级分数不小于的概率为:.

(2)由题意得,随机抽取人,其等级成绩为的概率为.

学生个数的可能取值为

其数学期望是:

其中:

应用错位相减法“①式-②式”得:

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网