题目内容
(本题满分14分)已知(1)求函数的最大值; (2)求使成立的x的取值范围.
(1) 1 (2)
解析
(12分)已知函数f(x)=, x∈[3, 5](1)判断f(x)单调性并证明;(2)求f(x)最大值,最小值.
若是关于的方程的两根,求的最大值和最小值.
(本小题满分12分)函数是定义在上的奇函数,且.(1)求实数的值.(2)用定义证明在上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由).
(本小题满分12分)设函数的导函数为,若函数的图像关于直线对称,且.(1)求实数a、b的值(2)若函数恰有三个零点,求实数的取值范围。
(12分)已知是一次函数,且满足:,求.
对于函数,若存在,使,则称是的一个"不动点".已知二次函数(1)当时,求函数的不动点;(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f(x)= .(Ⅰ)求f(x)在[-1, 1]上的解析式; (Ⅱ)证明f(x)在(0, 1)上时减函数; (Ⅲ)当λ取何值时, 方程f(x)=λ在[-1, 1]上有解?
(本题满分12分)设,时,的最小值是-1,最大值是1,求、的值.