题目内容
已知函数的图象在上连续,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.
(Ⅰ)若,试写出,的表达式;
(Ⅱ)已知函数,试判断是否为上的“阶收缩函数”.如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
(Ⅰ),;(Ⅱ)存在k=4,使得f(x)是[﹣1,4]上的4阶收缩函数.(Ⅲ)
解析试题分析:(Ⅰ)根据f(x)=cosx的最大值为1,可得f1(x)、f2(x)的解析式.
(Ⅱ)根据函数f(x)=x2在x∈[-1,4]上的值域,先写出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
(3)先对函数f(x)进行求导判断函数的单调性,进而写出f1(x)、f2(x)的解析式,
然后再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
试题解析:
(Ⅰ)由题意可得:,2分
(Ⅱ),,
所以 4分
当时,,∴,即;
当时,,∴,即;
当时,,∴,即.
综上所述,∴
即存在k=4,使得f(x)是[﹣1,4]上的4阶收缩函数. 7分
(Ⅲ)令得或.函数f(x)的变化情况如下:x (-,0) 0 (0,2) 2 (2,+) - 0 + 0 - f(x) 0 4