题目内容
【题目】用系统抽样法从140名学生中抽取容量为20的样本,将140名学生从1~140编号.按编号顺序平均分成20组(1~7号,8~14号,…,134~140号),若第17组抽出的号码为117,则第一组中按此抽样方法确定的号码是( )
A.7B.5C.4D.3
【答案】B
【解析】
第17组的编号是113,114,115,116,117,118,119,第17组抽出的号码为117,117是第17组的第5个数,由此能求出第一组中按此抽样方法确定的号码.
用系统抽样法从140名学生中抽取容量为20的样本,
将140名学生从编号.按编号顺序平均分成20组号,号,,号),
第17组的编号是113,114,115,116,117,118,119,
第17组抽出的号码为117,117是第17组的第5个数,
第一组中按此抽样方法确定的号码是5.
故选:.
【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表一
生产能力分组 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 4 | 8 | 5 | 3 |
表二
生产能力分组 | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 6 | 36 | 18 |
①先确定再补全下列频率分布直方图(用阴影部分表示).
②就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
③分别估计类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).
【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.