题目内容
【题目】
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为
l:y=3x+1,且当x=时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为
【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5, f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.
试题解析:
(1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b.
当x=1时,切线l的斜率为3,可得2a+b=0,①
当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②
由①②,解得a=2,b=-4.
由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5, f′(x)=3x2+4x-4.
令f′(x)=0,解得x1=-2,x2=.
当x变化时,f′(x),f(x)的取值及变化情况如下表所示:
x | -3 | (-3,-2) | -2 | 1 | |||
f′(x) | + | 0 | - | 0 | + | ||
f(x) | 8 | 13 | 4 |
所以y=f(x)在[-3,1]上的最大值为13,最小值为.
练习册系列答案
相关题目