题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)当时,判断直线与曲线的位置关系;
(2)若直线与曲线相交所得的弦长为,求的值.
【答案】(1)相离;(2)或.
【解析】
(1)根据参数方程和极坐标方程与普通方程的关系,进行转化求解即可,利用圆心到直线的距离与半径比较,得出直线与圆的位置关系.
(2)由垂径定理,得出圆心到直线的距离,进而求出直线方程中参数的值.
(1)由
得,
所以曲线的普通方程为.
当时,由,得,
得,得,
代入公式 得,即.
故直线的直角坐标方程为.
因为圆心到直线:的距离为.
所以直线与圆相离.
(2)由,得,
代入公式 得,即.
由垂径定理,得圆心到直线:的距离为.
再由点到直线间的距离公式,得,
解得或.
【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主
创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
2.4 | 2.7 | 4.1 | 6.4 | 7.9 |
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合):
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满500元可减50元;
方案二:每满500元可抽奖一次,每次中奖的概率都为,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.
②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由
附:相关系数公式
参考数据:.
【题目】随着经济的发展和人民生活水平的提高,以及城市垃圾分类收集的实施和推广,我国居民生活垃圾的平均热值逐年.上升,垃圾焚烧发电的吨上网电量(单位:千瓦时/吨)显著增加.下表为某垃圾焚烧发电厂最近五个月的生产数据.
月份代码 | |||||
吨上网电量 | |||||
若从该发电厂这五个月的生产数据(吨上网电量)中任选两个,求其中至少有一个生产数据超过的概率;
通过散点图(如图)可以发现,变量与之间的关系可以用函数(其中为自然对数的底数)来拟合,求常数,的值.
参考公式:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计公式分别为,.
【题目】某学校为了调查学生数学素养的情况,从初中部、高中部各随机抽取100名学生进行测试.初中部的100名学生的成绩(单位:分)的频率分布直方图如图所示.
高中部的100名学生的成绩(单位:分)的频数分布表如下:
测试分数 | |||||
频数 | 5 | 20 | 35 | 25 | 15 |
把成绩分为四个等级:60分以下为级,60分(含60)到80分为级,80分(含80)到90分为级,90分(含90)以上为级.
(1)根据已知条件完成下面的列联表,据此资料你是否有99%的把握认为学生数学素养成绩“级”与“所在级部”有关?
不是级 | 级 | 合计 | |
初中部 | |||
高中部 | |||
合计 |
注:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)若这个学校共有9000名高中生,用频率估计概率,用样本估计总体,试估计这个学校的高中生的数学素养成绩为级的人数,并估计数学素养成绩的平均分(用组中值代表本组分数);
(3)把初中部的级同学编号为,,,,,高中部的级同学编号为,,,,,从初中部级、高中部级中各选一名同学,求这两名同学的编号奇偶性相同的概率.