题目内容
【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.
【答案】(1),;(2).
【解析】
(1)利用极坐标与直角坐标互化公式即可求得直线的直角坐标方程,将曲线C的参数方程消参数即可求得曲线的普通方程,问题得解。
(2)求出点的直角坐标,再利用椭圆的参数方程表示点的坐标为,利用点到直线距离公式及两角差的正弦公式即可整理点P到直线的距离,问题得解。
(1)因为直线的极坐标方程为,
即ρsinθ-ρcosθ+4=0.
由x=ρcosθ,y=ρsinθ,
可得直线的直角坐标方程为x-y-4=0.
将曲线C的参数方程消去参数,
得曲线C的普通方程为.
(2)设N(,sinα),α∈[0,2π).
点M的极坐标(,)化为直角坐标为(-2,2).
则.
所以点P到直线的距离,
所以当时,点M到直线的距离的最大值为.
练习册系列答案
相关题目
【题目】下表是某地某年月平均气温(华氏度):
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
平均气温 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
以月份为x轴(月份),以平均气温为y轴.
(1)用正弦曲线去拟合这些数据;
(2)估计这个正弦曲线的周期T和振幅A;
(3)下面三个函数模型中,哪一个最适合这些数据?
①;②;③.