题目内容
设f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217970308.png)
(Ⅰ) 该函数的图象可由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218002520.png)
(Ⅱ)若f (θ)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218033344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218048651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218064453.png)
(Ⅰ) 变换的步骤是:
①把函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218236413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218407814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218423338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218438881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218626918.png)
(Ⅱ) (1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218641525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142186571659.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218672535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142187041555.png)
解决正弦型函数如何由正弦函数变化而来的问题,可分两步:1变解析式2描述。
本题首先把函数f (x)=sin 2x+
(sin x-cos x)(sin x+cos x)化为正弦型函数
;
变解析式:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218922223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218922223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218922223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218626918.png)
描述:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218407814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142194681406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218438881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142194991221.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218626918.png)
所以
,则
求得
。
(Ⅰ) 解:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142196402421.png)
即
。…………………………………3分
变换的步骤是:
①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;…………………………………3分
(Ⅱ) 解:因为
,所以
,则
,又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218048651.png)
,
,从而
……2分
(1)当
时,
;…………2分
(2)当
时;
;……………2分
本题首先把函数f (x)=sin 2x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217970308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142187352473.png)
变解析式:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218922223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218407814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218922223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218438881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218922223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218626918.png)
描述:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219374678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218407814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142194681406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218438881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142194991221.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218626918.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219546998.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142195621124.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219608963.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219624697.png)
(Ⅰ) 解:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142196402421.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219546998.png)
变换的步骤是:
①把函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214217986518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218236413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218407814.png)
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218423338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218438881.png)
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218626918.png)
(Ⅱ) 解:因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219546998.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142195621124.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219608963.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218048651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214220108872.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214220123868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214219624697.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218641525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142202791667.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214218672535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232142187041555.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目