题目内容
8.抛物线x2=4y上的点P到焦点的距离是4,则点P的纵坐标为3.分析 先根据抛物线的方程求得准线的方程,进而根据抛物线的定义,利用点P到准线的距离求得点P的纵坐标,求得答案.
解答 解:根据抛物线的定义可知点P与抛物线焦点的距离就是点P与抛物线准线的距离,
依题意可知抛物线的准线方程为y=-1,
∵点P与抛物线焦点的距离为4,
∴点P到准线的距离为4=3+1,
∴点P的纵坐标为:3.
故答案为:3
点评 本题主要考查了抛物线的简单性质有意见抛物线的定义的运用.学生对抛物线基础知识的掌握.属基础题.
练习册系列答案
相关题目
19.棱长为2的正方体的顶点都在同一个球面上,则该球的体积和表面积分别是( )
A. | $2\sqrt{3}π,12π$ | B. | $4\sqrt{3}π,12π$ | C. | $2\sqrt{3}π,6π$ | D. | $4\sqrt{3}π,6π$ |
16.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$是不平行于x轴的单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$,则$\overrightarrow{b}$=( )
A. | ($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | C. | ($\frac{1}{4}$,$\frac{3\sqrt{3}}{4}$) | D. | (1,0) |
20.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到我市周一至周五某一时间段车流量与PM2.5的数据如表
(Ⅰ)根据表中数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)规定当一天内PM2.5的浓度平均值在(0,35]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(35,75]内,空气质量等级为良.为使我国某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内?(结果保留整数)
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 59 | 55 | 52 | 51 | 58 |
PM2.5的浓度平均值y(微克/立方米) | 81 | 67 | 66 | 59 | 77 |
(Ⅱ)规定当一天内PM2.5的浓度平均值在(0,35]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(35,75]内,空气质量等级为良.为使我国某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内?(结果保留整数)
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
18.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的表面积为( )
A. | 32 | B. | 48+16$\sqrt{2}$ | C. | 64 | D. | 32+16$\sqrt{2}$ |