题目内容
【题目】如图,在以,,,,,为顶点的五面体中,平面平面,是边长为的正三角形,直线与平面所成角为.
(I)求证:;
(Ⅱ)若,四边形为平行四边形,求平面与平面所成锐二面角的余弦值.
【答案】(I)证明见解析;(Ⅱ).
【解析】
(I)过作交于点,连接,先证明平面,再由平面,得出。
(Ⅱ)以,,为轴,建立空间直角坐标系,分别求出平面、平面的法向量、,再由 得出平面与平面所成锐二面角的余弦值。
证明:(I)过作交于点,连接,
由平面平面,得平面,∴,
又,,∴,∴.
由直线与平面所成角为,易得,
由,得,又,得.
由,,,平面,得平面,平面,∴.
(Ⅱ)由(I),,,两两垂直,以为坐标原点,建立如图所示空间直角坐标系,由题意,,∴,
四边形为平行四边形,∴,平面,平面,∴平面,平面平面,∴,.
,,,,,,
,,,,
设平面的法向量为,由,得,取,得,
设平面的法向量为,,,取,,
,∴所求锐二面角的余弦值为.
【题目】某大型超市公司计划在市新城区开设分店,为确定在新城区开设分店的个数,该公司对该市已开设分店的其他区的数据统计后得到下列信息(其中表示在该区开设分店的个数,表示这个分店的年收入之和):
分店个数(个) | 2 | 3 | 4 | 5 | 6 |
年收入(万元) | 250 | 300 | 400 | 450 | 600 |
(Ⅰ)该公司经过初步判断,可用线性回归模型拟合与的关系,求关于的回归方程;
(Ⅱ)假设该公司每年在新城区获得的总利润(单位:万元)与,之间的关系为,请根据(Ⅰ)中的线性回归方程,估算该公司在新城区开设多少个分店时,才能使新城区每年每个分店的平均利润最大.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为: ,.
【题目】为响应低碳绿色出行,某市推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车,每次租车收费得标准由以下两部分组成:(1)根据行驶里程数按1元/公里计费;(2)当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费;(3)租车时间不足1分钟,按1分钟计算.已知张先生从家里到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间t20,60(单位:分钟).由于堵车,红绿灯等因素,每次路上租车时间t是一个随即变量.现统计了他50次路上租车时间,整理后得到下表:
租车时间t(分钟) | [20,30] | (30,40] | (40,50] | (50,60] |
频数 | 2 | 18 | 20 | 10 |
将上述租车时间的频率视为概率.
(1)写出张先生一次租车费用y(元)与租车时间t(分钟)的函数关系式;
(2)公司规定,员工上下班可以免费乘坐公司接送车,若不乘坐公司接送车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司接送车,还是租用该款新能源汽车?