题目内容
【题目】已知函数,,则的零点个数为( )
A. 6B. 7C. 8D. 9
【答案】B
【解析】
利用复合函数的性质,转化为新的方程x3﹣9x=10或13或7的解的问题,然后转化为交点问题即可得答案.
根据题意得,若函数f(x)=x3﹣9x=0x(x2﹣9)=0,解得x=0或±3;
令g(x)=f(f(x)﹣10)=0f(x)﹣10=0或±3,即x3﹣9x=10或13或7;
∵f(x)=x3﹣9x,∴f′(x)=3x2﹣9=3(x2﹣3);
令f′(x)=0x=±;令f′(x)>0x或x;令f′(x)<0;
且f();f()=﹣;
画出函数f(x)草图为:
通过图象可以发现:x2﹣9x=10或13或7共有7个解,
故函数g(x)有7个零点.
故选:B.
【题目】为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
参加人数占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | 12% | 4% | 2% |
估计该校高一学生参加传统文化活动情况正确的是().
A. 参加活动次数是3场的学生约为360人B. 参加活动次数是2场或4场的学生约为480人
C. 参加活动次数不高于2场的学生约为280人D. 参加活动次数不低于4场的学生约为360人
【题目】某地区随着经济的发展,居民收入逐年增长,银行储蓄连年增长,下表是该地区某银行连续五年的储蓄存款(年底结算):
年份 | |||||
储蓄存款(千亿元) |
为方便研究,工作人员对上表的数据做了如下处理:,得到下表:
(1)用最小二乘法求出关于的线性回归方程;
(2)通过(1)中的方程,求出关于的线性回归方程,并用所求回归方程预测年底,该地储蓄存款额可达多少?
(附:参考公式,其中,)