题目内容
12.若向量$\overrightarrow{a}$=(2,3)与向量$\overrightarrow{b}$=(-4,y)共线,则y=-6.分析 直接利用向量共线的充要条件,列出方程求解即可.
解答 解:向量$\overrightarrow{a}$=(2,3)与向量$\overrightarrow{b}$=(-4,y)共线,
可得-12-2y=0,
解得y=-6.
故答案为:-6.
点评 本题考查向量共线的充要条件的应用,考查计算能力.
练习册系列答案
相关题目
2.在△ABC中,∠A=60°,a=$\sqrt{14}$,b=4,满足条件的△ABC( )
A. | 无解 | B. | 只有一解 | C. | 有两解 | D. | 不能确定 |
20.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到我市周一至周五某一时间段车流量与PM2.5的数据如表
(Ⅰ)根据表中数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)规定当一天内PM2.5的浓度平均值在(0,35]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(35,75]内,空气质量等级为良.为使我国某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内?(结果保留整数)
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 59 | 55 | 52 | 51 | 58 |
PM2.5的浓度平均值y(微克/立方米) | 81 | 67 | 66 | 59 | 77 |
(Ⅱ)规定当一天内PM2.5的浓度平均值在(0,35]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(35,75]内,空气质量等级为良.为使我国某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内?(结果保留整数)
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
4.设t是函数f(x)=ex+lnx的零点,若x0>t,则f(x0)的值满足( )
A. | f(x0)=0 | B. | f(x0)>0 | C. | f(x0)<0 | D. | f(x0)的符号不确定 |
5.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为2的正三角形,SC为球O的直径,且SC=4,则此棱锥的体积为( )
A. | $\frac{{4\sqrt{2}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | $\frac{{8\sqrt{2}}}{3}$ | D. | $4\sqrt{2}$ |