题目内容

【题目】设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(
A.M<N
B.M=N
C.M>N
D.M、N大小不确定

【答案】C
【解析】解:∵△ABC为锐角三角形, ∴A+B>90°,
∴A>90°﹣B,
∴sinA>sin(90°﹣B)=cosB,即:sinA>cosB,
同理可得:sinB>cosC,sinC>cosA,
上面三式相加:sinA+sinB+sinC>cosA+cosB+cosC,
∴在锐角△ABC中,sinA+sinB+sinC>cosA+cosB+cosC,
∴M>N,
故选:C.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网