题目内容
【题目】已知函数f(x)=lnx﹣ex+m在x=1处有极值,求m的值及f(x)的单调区间.
【答案】解:f(x)的定义域为(0,+∞), , 由函数f(x)=lnx﹣ex+m在x=1处有极值,可得f'(1)=1﹣e1+m=0,
解得:m=﹣1,从而 ,
显然f'(x)在(0,+∞)上是减函数,且f'(1)=0,
所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.
故f(x)的单调增区间是(0,1),f(x)的单调减区间是(1,+∞)
【解析】求导f′(x),从而令f′(1)=0,从而求m再检验即可;讨论以确定导数的正负,从而求函数的单调区间
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
时间x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)用线性回归分析的方法求回归方程 = x+ .
(2)预测小李该月6号打6小时篮球的投篮命中率.
.
【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:K2=
P(K2>k0) | 0.10 | 0.05 |
| 0.005 |
k0 | 2.706 | 3.841 |
| 7.879 |