题目内容
【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
数量(单位:辆) | 37 | 104 | 147 | 196 | 216 |
(1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;
(2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:
(i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:;.
【答案】(1),320;(2)(i)12人;(ii)936.
【解析】
(1)由表中数据,计算得与的值,则线性回归方程可求,取x=7求得y值得答案;
(2)(i)由频率直方图求得有意竞拍报价不低于1000元的频率,乘以40得答案.
(ii)由题意,.由频率直方图估算知,报价应该在900-1000之间,设报价为x百元,可得.求解x值即可.
(1)由表中数据,计算得,,,.
故所求线性回归方程为,
令x=7,得;
(2)(i)由频率直方图可知,有意竞拍报价不低于1000元的频率为:
(0.25+0.05)×1=0.3,
共抽取40位业主,则40×0.3=12,
∴有意竞拍不低于1000元的人数为12人.
(ii)由题意,.
由频率直方图估算知,报价应该在900-1000之间,
设报价为x百元,
则.
解得x≈9.36.
∴至少需要报价936元才能竞拍成功.
【题目】为考查某种药物预防疾病的效果,随机抽查了50只服用药的动物和50只未服用药的动得知服用药的动物中患病的比例是,未服用药的动物中患病的比例为.
(I)根据以上数据完成下列2×2列联表:
患病 | 未患病 | 总计 | |
服用药 | |||
没服用药 | |||
总计 |
(II)能否有99%的把握认为药物有效?并说明理由.
附:
… | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
… | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在15到75岁的人群“是否使用手机支付”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)
年龄段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
使用人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?
年龄低于45岁 | 年龄不低于45岁 | |
使用手机支付 | ||
不使用手机支付 |
(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:.