题目内容
【题目】年将在日本东京举办第届夏季奥林匹克运动会,简称为“奥运会”,为了解不同年龄的人对“奥运会”的关注程度,某机构随机抽取了年龄在岁之间的 人进行调查,经统计,“年轻人”与“中老年人”的人数之比为.
关注 | 不关注 | 合计 | |
年轻人 | |||
中老年人 | |||
合计 |
|
(1)根据已知条件完成上面的列联表,并判断是否有的把握认为是否关注“奥运会”与年龄段有关;
(2)现采用分层抽样的方法从中老年人中选取人进行问卷调查.若再从这人中选取人进行面对面询问,求事件“选取的人中至少有人关注奥运会”的概率.
附参考公式:,其中临界值表:
|
| ||
|
【答案】(1)列联表见解析;有的把握认为是否关注“奥返会”与年龄段有关.(2)
【解析】
(1)根据“年轻人”与“中老年人”的人数之比可得列联表,再进行独立性检验;
(2)列举“从这人中选取人”可能的情况,再得出事件“选取的人中至少有人关注奥运会”的事件数,利用古典概率公式求解.
解:(1)年轻人共有人,中老年人共有人.
关注 | 不关注 | 合计 | |
年轻人 | |||
中老年人 | |||
合计 |
所以.
故有的把握认为是否关注“奥返会”与年龄段有关.
(2)抽取的位中老年人中有人不关注,记为人关注,记为 ,设“选取的人中至少有人关注奥运会”为事件.
从送人中选人的选法有 共种.
其中有种情况满足题意;
故.
【题目】小明家的晚报在下午任何一个时间随机地被送到,他们一家人在下午任何一个时间随机地开始晚餐.为了计算晚报在晚餐开始之前被送到的概率,某小组借助随机数表的模拟方法来计算概率,他们的具体做法是将每个1分钟的时间段看作个体进行编号,编号为01,编号为02,依此类推,编号为90.在随机数表中每次选取一个四位数,前两位表示晚报时间,后两位表示晚餐时间,如果读取的四位数表示的晚报晚餐时间有一个不符合实际意义,视为这次读取的无效数据(例如下表中的第一个四位数7840中的78不符合晚报时间).按照从左向右,读完第一行,再从左向右读第二行的顺序,读完下表,用频率估计晚报在晚餐开始之前被送到的概率为
7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.B.C.D.
【题目】某研究机构对高三学生的记忆力和判断力进行统计分析,得下表数据:
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:,.
【题目】手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在15到75岁的人群“是否使用手机支付”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)
年龄段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
使用人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?
年龄低于45岁 | 年龄不低于45岁 | |
使用手机支付 | ||
不使用手机支付 |
(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:.