题目内容

11.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为(  )
A.$\sqrt{3}$B.2C.3D.4

分析 求得抛物线的焦点和准线方程,设出直线AB的方程,代入抛物线方程,消去x,求得y1=-$\frac{\sqrt{3}}{3}$p,y2=$\sqrt{3}$p,运用两点的距离公式,计算即可得到结论.

解答 解:抛物线C:y2=2px的焦点F($\frac{p}{2}$,0),
准线为x=-$\frac{p}{2}$,
设直线AB:y=$\sqrt{3}$(x-$\frac{p}{2}$),
联立抛物线方程,消去x,可得
$\sqrt{3}$y2-2py-$\sqrt{3}$p2=0,
设A(x1,y1),B(x2,y2),
则y1=-$\frac{\sqrt{3}}{3}$p,y2=$\sqrt{3}$p,
由M(-$\frac{p}{2}$,y1),
则|OM|=$\sqrt{\frac{{p}^{2}}{4}+{{y}_{1}}^{2}}$=$\sqrt{\frac{{p}^{2}}{4}+\frac{{p}^{2}}{3}}$=$\frac{\sqrt{21}}{6}$p,
|OB|=$\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}$=$\sqrt{\frac{{{y}_{2}}^{4}}{4{p}^{2}}+{{y}_{2}}^{2}}$=$\sqrt{\frac{9{p}^{4}}{4{p}^{2}}+3{p}^{2}}$=$\frac{\sqrt{21}}{2}$p,
即有|OB|=3|OM|.
故选C.

点评 本题考查抛物线的方程和性质,主要考查抛物线的焦点和准线方程的运用,同时考查直线和抛物线联立,求得交点,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网