题目内容

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1平面A1DE;
(2)求证:D1E⊥A1D;
(3)在线段AB上是否存在点E,使二面角D1-EC-D的大小为
π
6
?若存在,求出AE的长;若不存在,请说明理由.
证明:(1)四边形ADD1A1为正方形,O是AD1的中点,点E为AB的中点,连接OE.
∴EO为△ABD1的中位线∴EOBD1…(2分)
又∵BD1?平面A1DE,OB?平面A1DE∴BD1平面A1DE…(4分)
(2)由已知可得:AE⊥平面ADD1A1,A1D?平面ADD1A1
∴AE⊥A1D,
又∵A1D⊥AD1,AE∩AD1=A
∴A1D⊥平面AD1E,D1E?平面AD1E
∴A1D⊥D1E….(4分)
(3)由题意可得:D1D⊥平面ABCD,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则D(0,0,0),C(0,2,0),A1(1,0,1),D1(0,0,1),
设E(1,y0,0)(0≤y0≤2),
EC
=(-1,2-y0,0),
D1C
=(0,2,-1)

设平面D1EC的法向量为
n1
=(x,y,z)则
n1
EC
=0
n1
D1C
=0
,得
-x+y(2-y0)=0
2y-z=0

n1
是平面D1EC的一个法向量,而平面ECD的一个法向量为
n2
=(0,0,1),要使二面角D1-EC-D的大小为
π
6

cos
π
6
=|cos<
n1
n2
>|=
|
n1
n2
|
|
n1
|•|
n2
|
=
2
(2-y0)2+12+22
=
3
2

解得:y0=2-
3
3
(0≤y0≤2)
,当AE=2-
3
3
时,二面角D1-EC-D的大小为
π
6
…(6分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网