题目内容

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥面ABCD,且PA=AB=4,E为PD中点.
(1)证明:PB平面AEC;
(2)证明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.
(1)证明:在四棱锥P-ABCD中,
四边形ABCD为正方形,PA⊥面ABCD,
以A为坐标原点,以AB为x轴,以AD为y轴,以AP为z轴,建立空间直角坐标系,
∵PA=AB=4,E为PD中点,
∴P(0,0,4),B(4,0,0),
A(0,0,0),C(4,4,0),D(0,4,0),E(0,2,2),
PB
=(4,0,-4)
AC
=(4,4,0),
AE
=(0,2,2)

设平面AEC的法向量
n
=(x,y,z)

n
AC
=0
n
AE
=0

4x+4y=0
2y+2z=0
,∴
n
=(1,-1,1),
PB
n
=4+0-4=0,且PB不包含于平面AEC,
∴PB平面AEC.
(2)证明:在四棱锥P-ABCD中,
∵四边形ABCD为正方形,PA⊥面ABCD,
∴CD⊥AD,CD⊥PA,
∴CD⊥平面PAD,
∵CD?平面PCD,
∴平面PCD⊥平面PAD.
(3)∵平面ACD的法向量
m
=(0,0,1),
由(1)知平面AEC的法向量
n
=(1,-1,1),
∴cos<
m
n
>=
1
3
=
3
3

sin<
m
n
>=
1-(
3
3
)2
=
6
3

∴二面角E-AC-D的正弦值为
6
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网