题目内容
【题目】如图,在三棱柱中,侧面底面ABC, ,且,O为AC中点.
(1)求直线与平面所成角的正弦值;
(2)在上是否存在一点E,使得平面,若不存在,说明理由;若存在,确定点E的位置.
【答案】(1).;(2)E为的中点.
【解析】
(1)由已知中,O为AC中点,根据等腰三角形“三线合一”的性质,可得,又由已知中侧面底面ABC,故平面ABC,以O为原点,OB,OC,所在直线分别为x,y,z轴建立空间直角坐标系,分别求出直线的方向向量与平面的法向量,代入空间向量夹角公式,即可得到直线与平面所成角的正弦值;
(2)设出E点的坐标,根据平面,则OE的方向向量与平面的法向量垂直,数量积为零,我们可以求出E点坐标,进而确定E点的位置.
(1)如图,因为,且O为AC的中点,所以平面平面,交线为,且平面,所以平面.
以O为原点,所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,又
所以得:
则有:
设平面的一个法向量为,则有
,
令,得
所以.
因为直线与平面所成角和向量与所成锐角互余,
所以.
(2)设
即,得
所以得
令平面,得,
即得即存在这样的点E,E为的中点.
练习册系列答案
相关题目
【题目】某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表:
组号 | 分组 | 频率 |
第1组 | ||
第2组 | ||
第3组 | ||
第4组 | ||
第5组 |
求出频率分布表中处应填写的数据,并完成如图所示的频率分布直方图;
根据直方图估计这次自主招生考试笔试成绩的平均数和中位数结果都保留两位小数.