题目内容

某商品每件成本9元,售价为30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤21)的平方成正比.已知商品售价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期内该商品的销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期该商品的销售利润最大?
(Ⅰ)设商品降价x元,记商品在一个星期的获利为f(x),
∵每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤21)的平方成正比,
∴每个星期多卖的商品数为kx2
∵商品售价降低2元时,一星期多卖出24件,则24=k•22
∴k=6,
∴每个星期多卖的商品数为6x2
∴f(x)=(30-x-9)(432+6x2)=-6x3+126x2-432x+9072,x∈[0,21];
(Ⅱ)根据(1),则f'(x)=-18x2+252x-432=-18(x-2)(x-12),
令f'(x)=0,解得x=2或x=12,
∵f(0)=9072,f(2)=8664,f(12)=11664,f(21)=0,
∴当x=12时,f(x)取得最大值11664,
所以定价为18元才能使一个星期该商品的销售利润最大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网