题目内容

若规定
.
ab
cd
.
=ad-bc
,不等式
.
x+1x
mx-1
.
≥-2
对一切x∈(0,1]恒成立,则实数m的最大值为(  )
A.0B.2C.
5
2
D.3
由定义可知不等式
.
x+1x
mx-1
.
≥-2
化简为(x-1)(x+1)-mx≥-2,
即x2-mx+1≥0对一切x∈(0,1]恒成立,
∴mx≤x2+1,
∵x∈(0,1],
∴m
x2+1
x
=x+
1
x
恒成立.
设f(x)=x+
1
x

则f'(x)=1-
1
x2
=
x2-1
x2

则当x∈(0,1]时,f'(x)≤0,
∴函数f(x)单调第减,∴函数f(x)的最小值为f(1)=1+1=2,
∴m≤2,
即实数m的最大值为2.
故选:B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网