题目内容
【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点,且.
(1)证明:平面;
(2)若侧面与底面垂直,求五面体的体积.
【答案】(1)证明见解析;(2).
【解析】
(1)取的中点,连接、,证明四边形为平行四边形,可得出,再利用直线与平面平行的判定定理可证明出平面;
(2)取的中点,的中点,连接、、,将五面体分割为三棱柱和四棱锥,证明出底面和平面,然后利用柱体和锥体体积公式计算出两个简单几何体的体积,相加可得出五面体的体积.
(1)取的中点,连接、,
侧面为正方形,且,为的中点,
又为的中点,且,
且,,所以,四边形为平行四边形,.
平面,平面,平面;
(2)取的中点,的中点,连接、、,
四边形为正方形,.
平面平面,平面平面,平面,
底面,
易知,,,
,
为中点,,,
平面,平面,,
,、平面,平面.
,平面,且,
,因此,.
练习册系列答案
相关题目