题目内容

【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABCDEF||ABAB=2BC=EF=1AE=DE=3∠BAD=60GBC的中点.

)求证:FG||平面BED

)求证:平面BED⊥平面AED

)求直线EF与平面BED所成角的正弦值.

【答案】)详见解析()详见解析(

【解析】

试题()证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平几知识,如本题构造一个平行四边形:取的中点为,可证四边形是平行四边形,从而得出)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平几条件,如本题可由余弦定理解出,即)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点于点,则平面,从而直线与平面所成角即为.再结合三角形可求得正弦值

试题解析:()证明:取的中点为,连接,在中,因为的中点,所以,又因为,所以

,即四边形是平行四边形,所以,又平面平面,所以平面.

)证明:在中,,由余弦定理可,进而可得,即,又因为平面平面平面;平面平面,所以平面.又因为平面,所以平面平面.

)解:因为,所以直线与平面所成角即为直线与平面所成角.过点于点,连接,又因为平面平面,由()知平面,所以直线与平面所成角即为.中,,由余弦定理可得,所以,因此,在中,,所以直线与平面所成角的正弦值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网