题目内容

【题目】已知点在双曲线)上,且双曲线的一条渐近线的方程是

(1)求双曲线的方程;

(2)若过点且斜率为的直线与双曲线有两个不同的交点,求实数的取值范围;

(3)设(2)中直线与双曲线交于两个不同的点,若以线段为直径的圆经过坐标原点,求实数的值.

【答案】1;(2;(3.

【解析】

试题(1)要求双曲线的标准方程,必须找到关于的两个等式,题中一条渐近线方程为,说明,这是一个等式,点在双曲线上,那么此点坐标适合双曲线方程,代入进去又可得到一个等式,这样可解得(2)直线与双曲线有两个不同的交点,直接把直线方程与双曲线方程联立方程组,此方程组有两解,方法是消去一个元,得到关于的二次方程,此方程是二次方程有两个不等的实根,则(3)题设条件说明,如果设,则有可用表示出来,而(2)中可用表示出来,代入刚才的等式,得到的方程,可解得

试题解析:(1)由题知,有

解得

因此,所求双曲线的方程是

(2)∵直线过点且斜率为

直线

联立方程组

又直线与双曲线有两个不同交点,

解得

(3)设交点为,由(2)可得

又以线段为直径的圆经过坐标原点,

因此,为坐标原点).

于是,

,解得

满足,且

所以,所求实数

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网