题目内容

10.若实数x,y满足4x2+2x+y2+y=0,则2x+y的范围是[-2,0].

分析 配方并三角换元可得2x+y=$\frac{\sqrt{2}}{2}$cosθ-$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sinθ-$\frac{1}{2}$,由三角函数的值域求解方法可得.

解答 解:把已知式子配方可得(2x+$\frac{1}{2}$)2+(y+$\frac{1}{2}$)2=$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{2x+\frac{1}{2}=\frac{\sqrt{2}}{2}cosθ}\\{y+\frac{1}{2}=\frac{\sqrt{2}}{2}sinθ}\end{array}\right.$,∴$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{4}cosθ-\frac{1}{4}}\\{y=\frac{\sqrt{2}}{2}sinθ-\frac{1}{2}}\end{array}\right.$,
∴2x+y=$\frac{\sqrt{2}}{2}$cosθ-$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sinθ-$\frac{1}{2}$=sin(θ+$\frac{π}{4}$)-1,
∵-1≤sin(θ+$\frac{π}{4}$)≤1,∴-2≤sin(θ+$\frac{π}{4}$)-1≤0,
∴2x+y的范围为:[-2,0],
故答案为:[-2,0].

点评 本题考查不等式求式子的取值范围,三角换元是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网