题目内容
【题目】某水果批发商销售进价为每箱40元的苹果,假设每箱售价不低于50元且不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式.
(3)当每箱苹果的售价为多少元时,每天可以获得最大利润?最大利润是多少?
【答案】(1);
(2);
(3)55元时,最大利润为1125
【解析】
(1)由题意可得,化简即可.
(2)因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润,列出表达式即可.
(3)由(2)的表达式配方即可求出最值.
解:(1)根据题意,得,化简得.
(2)因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润,
所以.
(3)因为,
所以当时,随x的增大而增大.
又,,所以当时,有最大值,最大值为1125.
所以当每箱苹果的售价为55元时,每天可以获得最大利润,最大利润为1125元.
【题目】某研究性学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
合计 | 20 | 10 | 30 |
经计算,则下列选项正确的是( )
0.50 | 0.25 | 0.1 | 0.050 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响
【题目】甲、乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们射击成绩的分布列如下表所示.
射手甲 | 射手乙 | ||||||
环数 | 环数 | ||||||
概率 | 概率 |
(1)若甲射手共有发子弹,一旦命中环就停止射击,求他剩余发子弹的概率;
(2)若甲、乙两名射手各射击次,求次射击中恰有次命中环的概率;
(3)若甲、乙两名射手各射击次,记所得的环数之和为,求的概率分布.