题目内容
【题目】如图所示,,分别为椭圆的左,右焦点,椭圆上点的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,则椭圆的离心率为( )
A.B.C.D.
【答案】A
【解析】
设椭圆的长半轴、短半轴、半焦距长分别为a、b、c,可得M(c,b),利用勾股定理与椭圆的定义建立关于a、b、c的等式,化简整理得ba,从而得出ca,即可算出该椭圆的离心率.
设椭圆的长半轴、短半轴、半焦距长分别为a、b、c,
可得焦点为F1(﹣c,0)、F2(c,0),点M的坐标为(c,b),
∵Rt△MF1F2中,F1F2⊥MF2,
∴|F1F2|2+|MF2|2=|MF1|2,即4c2b2=|MF1|2,
根据椭圆的定义得|MF1|+|MF2|=2a,
可得|MF1|2=(2a﹣|MF2|)2=(2ab)2,
∴(2ab)2=4c2b2,整理得4c2=4a2ab,
可得3(a2﹣c2)=2ab,所以3b2=2ab,解得ba,
∴ca,因此可得e,
即该椭圆的离心率等于.
故选:A.
练习册系列答案
相关题目