题目内容
【题目】已知函数f(x)是定义域为R上的奇函数,当x>0时,f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求实数t的取值范围.
【答案】(1)f(x)=;(2)(,+∞).
【解析】
试题(1)运用奇函数的定义,可得x<0的解析式,进而得到f(x)的解析式;
(2)求出f(x)在R上递增.不等式f(t﹣2)+f(2t+1)>0即为f(1+2t)>﹣f(t﹣2)=f(2﹣t),即有1+2t>2﹣t,解不等式即可得到所求范围.
解:(1)∵函数f(x)是定义域为R上的奇函数,
∴f(x)=﹣f(﹣x)
又∵当x>0时,f(x)=x2+2x.
若x>0,则﹣x<0.f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x
∴f(x)=﹣f(﹣x)=2x﹣x2.
∴f(x)=;
(2)当x>0时,f(x)=x2+2x=(x+1)2﹣1,
区间(0,+∞)在对称轴x=﹣1的右边,为增区间,
由奇函数的性质,可得f(x)在R上递增.
不等式f(t﹣2)+f(2t+1)>0即为
f(1+2t)>﹣f(t﹣2)=f(2﹣t),
即有1+2t>2﹣t,解得t>
则t的取值范围是(,+∞).
【题目】上饶市委、市政府在上饶召开上饶市全面展开新能源工程动员大会,会议动员各方力量,迅速全面展开新能源工程工作.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.
(1)完成列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
设备改造前 | 设备改造后 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)根据市场调查,设备改造后,每生产一件合格品企业可获利200元,一件不合格品亏损150元,用频率估计概率,则生产1000件产品企业大约能获利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.