题目内容
【题目】已知抛物线在第一象限内的点到焦点的距离为.
(1)若,过点, 的直线与抛物线相交于另一点,求的值;
(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.
【答案】(1);(2)时 , 的长为定值.
【解析】试题分析:(1)根据抛物线的性质可得到焦点的距离为可得出,求出的方程,联立抛物线,故而可得, ,即可得最后结果;(2)设出直线的方程为,设 ,与抛物线方程联立,运用韦达定理得, ,由,得,将, 代入可得的值,利用直线截圆所得弦长公式得,故当时满足题意.
试题解析:(1)∵点,∴,解得,
故抛物线的方程为: ,当时,,
∴的方程为,联立可得, ,
又∵, ,∴.
(2)设直线的方程为,代入抛物线方程可得,
设 ,则, ,①
由得: ,
整理得,②
将①代入②解得,∴直线,
∵圆心到直线l的距离,∴,
显然当时, , 的长为定值.
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,是否可用线性回归模型拟合与的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | |||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.
附:相关系数公式,参考数据,.