题目内容

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

【答案】
(1)证明:∵PA⊥底面ABCD,CD平面ABCD,∴PA⊥CD,

又AC⊥CD,AC∩PA=A,

∴CD⊥平面PAC,又AE平面PAC,

∴CD⊥AE


(2)证明:∵PA⊥底面ABCD,AB平面ABCD∴PA⊥AB,

又AD⊥AB,AD∩PA=A

∴AB⊥平面PAD,又PD平面PAD∴AB⊥PD,

由PA=AB=BC,∠ABC=60°,则△ABC是正三角形.

∴AC=AB∴PA=PC

∵E是PC中点∴AE⊥PC

由(1)知AE⊥CD,又CD∩PC=C∴AE⊥平面PCD

∴AE⊥PD,又AB⊥PD,AB∩AE=A

∴PD⊥平面ABE


(3)解:过E点作EM⊥PD于M点,连结AM,

由(2)知AE⊥平面PCD,则AE⊥PD,

则PD⊥平面AEM,∴AM⊥PD,

则∠AME是二面角A﹣PD﹣C的平面角.

设AC=a,AD= = ,PA=A,PD= = a,

AM= = =

在Rt△AEM中,AE= a,EM= = = a,

则tan∠AME= = =


【解析】(1)运用线面垂直的判定和性质定理即可得证CD⊥AE;(2)运用线面垂直的性质和判定定理,即可得到PD⊥平面ABE;(3)过E点作EM⊥PD于M点,连结AM,由(2)知AE⊥平面PCD,则AM⊥PD,则∠AME是二面角A﹣PD﹣C的平面角.通过解三角形AEM,即可得到所求值.

练习册系列答案
相关题目

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

求一辆普通6座以下私家车(车险已满三年)在下一年续保时保费高于基本保费的频率;

某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网