题目内容
【题目】在直角坐标系中,曲线的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
写出曲线
的极坐标的方程以及曲线
的直角坐标方程;
若过点
(极坐标)且倾斜角为
的直线
与曲线
交于
,
两点,弦
的中点为
,求
的值.
【答案】(Ⅰ)曲线的极坐标方程为:
;曲线
的直角坐标方程为:
.(Ⅱ)
.
【解析】试题分析:(1)先消参数得的普通方程,再根据
得曲线
的极坐标的方程,利用
将曲线
的极坐标方程化为直角坐标方程(2)先求直线参数方程,再代入
的普通方程,利用韦达定理以及参数几何意义求
的值.
试题解析: 由题意
的方程为:
可得
的普通方程为:
,
将代入曲线方程可得:
.
因为曲线的极坐标方程为
,
所以.
又,
,
.
所以.
所以曲线的极坐标方程为:
;曲线
的直角坐标方程为:
.
因为点
,化为直角坐标为
所以
.
因为直线过点
且倾斜角为
,所以直线
的参数方程为
(
为参数),代入
中可得:
,
所以由韦达定理: ,
,
所以.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
.某同学家里有一辆该品牌车且车龄刚满三年,记
为该品牌车在第四年续保时的费用,求
的分布列与数学期望值;(数学期望值保留到个位数字)
某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.