题目内容

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=16.
(1)若a=4,b=5,求cosC的值;
(2)若sinA+sinB=3sinC,且△ABC的面积S=18sinC,求a和b的值.

【答案】
(1)解:由题意可知c=16﹣(a+b)=7

由余弦定理得


(2)解:由

可得

化简得sinA+sinAcosB+sinB+sinBcosA=4sinC

即sinA+sinB+sin(A+B)=4sinC,

sinA+sinB=3sinC即a+b=3c

又a+b+c=16∴a+b=12,

由于

,即a=b=6


【解析】(1)求出c,根据余弦定理求出C的余弦值即可;(2)根据倍角公式以及三角形的面积公式得到关于a,b的方程组,解出即可.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网