题目内容

16.已知数列{an}中,an>0,且3an+12=an(an-2an+1),a1=1.
(1)求证:数列{an}是等比数列,并求其通项公式;
(2)若bn=$\frac{1}{n}$(log3a1+log3a2+…+log3an),且数列{bn}的前n项和为Tn,求Tn的最大值.

分析 (1)由3an+12=an(an-2an+1),因式分解为(3an+1-an)(an+1+an)=0,由于an>0,可得an+1=$\frac{1}{3}{a}_{n}$,即可证明;
(2)由(1)可得log3an=1-n.可得bn=$\frac{1}{n}$[(1-1)+(1-2)+…+(1-n)]=$\frac{1-n}{2}$,由bn≥0,解得n≤1,即可得出数列{bn}的前n项和Tn的最大值.

解答 (1)证明:由3an+12=an(an-2an+1),化为(3an+1-an)(an+1+an)=0,
∵an>0,
∴3an+1-an=0,即an+1=$\frac{1}{3}{a}_{n}$,
∴数列{an}是等比数列,首项为1,公比为$\frac{1}{3}$.
∴an=$(\frac{1}{3})^{n-1}$.
(2)解:由(1)可得log3an=$lo{g}_{3}(\frac{1}{3})^{n-1}$=1-n.
∴bn=$\frac{1}{n}$(log3a1+log3a2+…+log3an)=$\frac{1}{n}$[(1-1)+(1-2)+…+(1-n)]=$\frac{1}{n}[n-\frac{n(n+1)}{2}]$=1-$\frac{n+1}{2}$=$\frac{1-n}{2}$,
由bn≥0,解得n≤1,
∴当n=1时,Tn取得最大值0.

点评 本题考查了递推式的应用、等比数列的通项公式与等差数列的前n项和公式、对数的运算性质,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网