题目内容
【题目】如图,已知圆M过点P(10,4),且与直线4x+3y-20=0相切于点A(2,4)
(1)求圆M的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且,求直线l的方程;
【答案】(1)(2)2x-y + 5=0或2x-y -15=0.
【解析】试题分析:(1)由题意得到圆心M(6,7),半径,进而得到圆的方程;(2)直线l∥OA,所以直线l的斜率为,根据点线距和垂径定理得到 解得m=5或m=-15,进而得到方程.
解析:(1)过点A(2,4)且与直线4x+3y-20=0垂直的直线方程为3x-4y+10=0 ①
AP的垂直平分线方程为x=6 ②
由①②联立得圆心M(6,7),半径
圆M的方程为
(2)因为直线l∥OA,所以直线l的斜率为.
设直线l的方程为y=2x + m,即2x-y + m=0
则圆心M到直线l的距离
因为
而 所以,解得m=5或m=-15.
故直线l的方程为2x-y + 5=0或2x-y -15=0.
【题目】已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:
(1)试问这3年的前7个月中哪个月的月平均利润最高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.
月份x | 1 | 2 | 3 | 4 |
利润y(单位:百万元) | 4 | 4 | 6 | 6 |
相关公式: , .
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?