题目内容
某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是,出现绿灯的概率都是.记这4盏灯中出现红灯的数量为,当这排装饰灯闪烁一次时:
(1)求时的概率;(2)求的数学期望.
(1)(2)
解析试题分析:(1) 3分
即 时的概率为 4分
(2)法一:依题意, 12
法二:的可能取值为0,1,2,3,4
10分
12分
考点:古典概型和二项分布
点评:主要是考查了概率的运用,利用古典概型的概率以及二项分布的性质来求解,属于基础题。
练习册系列答案
相关题目
某商店试销某种商品,获得如下数据:
日销售量(件) | 0 | 1 | 2 | 3 |
概率 | 0.05 | 0.25 | 0.45 | 0.25 |
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。
某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
等级 | 1 | 2 | 3 | 4 | 5 |
频率 | a | 0.2 | 0.45 | b | c |
(2)在(1)的条件下,将等级编号为4的3件产品记为xl,x2,x3,等级编号为5的2件产品记为yl ,y2,现从xl,x2,x3,yl,y2这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件品的级编号恰好相同的概率。
(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:
| 8环 | 9环 | 10环 |
甲 | 0.2 | 0.45 | 0.35 |
乙 | 0.25 | 0.4 | 0.35 |
(Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.