题目内容

某商店试销某种商品,获得如下数据:

日销售量(件)
0
1
2
3
概率
0.05
0.25
0.45
0.25
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货再补充3件,否则不进货。
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。

(1)0.3 ,(2)X的分布列为

X
2
3
4
P
0.25
0.3
0.45
      
期望EX=3.2 

解析试题分析:(1)即指当天出售的件数少于2件    2分
概率P=0.05+0.25=0.3       3分
(2)X的可能取值为2,3,4      6分
X=2指当天只出售1件,则P(X=2)=0.25
X=3指当天出售0件或3件,则P(X=3)=0.05+0.25=0.3
X=4指当天出售2件,则P(X=4)=0.45     9分
X的分布列为

X
2
3
4
P
0.25
0.3
0.45
 
期望EX=2×0.25+3×0.3+4×0.45=3.2       12分
考点:本题考查了概率与统计
点评:在求概率时,应注意立事件概率公式的应用,还有区分是属于什么事件.求分布列时要掌握分布列的概念及性质

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网