题目内容
【题目】设集合的元素均为实数,若对任意,存在,,使得且,则称元素个数最少的和为的“孪生集”;称的“孪生集”的“孪生集”为的“2级孪生集”;称的“2级孪生集”的“孪生集”为的“3级孪生集”,依此类推……
(1)设,直接写出集合的“孪生集”;
(2)设元素个数为的集合的“孪生集”分别为和,若使集合中元素个数最少且所有元素之和为2,证明:中所有元素之和为;
(3)若,请直接写出的“级孪生集”的个数,及所有“级孪生集”的并集的元素个数.
【答案】(1),;(2)证明见解析;(3),
【解析】
(1)根据集合定义直接得到答案.
(2)将集合中元素从小到大排列:,则“孪生集”
,,构成公差为2的等差数列,计算得到答案.
(3)的“级孪生集”的个数为,计算元素个数得到答案.
(1),
(2)将集合中元素从小到大排列:
则其“孪生集”,,设集合,
由于,,,,
因此集合中元素个数,
若,则有,
即
因此构成公差为2的等差数列,
所以,进而
(3)的“级孪生集”的个数为
所有“级孪生集”的并集的元素个数为.
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |