题目内容
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)详见解析;(Ⅱ)①;②数学期望为6,方差为2.4.
【解析】
(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.
(2)① 由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.
② 由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差.
解:(1)完成列联表(单位:人):
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 50 | 100 |
女性 | 70 | 30 | 100 |
合计 | 120 | 80 | 200 |
由列联表,得:
,
∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.
(2)①由题意所抽取的10名女市民中,经常网购的有人,
偶尔或不用网购的有人,
∴选取的3
.
② 由列联表可知,抽到经常网购的市民的频率为:,
将频率视为概率,
∴从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,
由题意,
∴随机变量的数学期望,
方差D(X)=.