题目内容

【题目】在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则cos2α+cos2β=1.类比到空间中一个正确命题是:在长方体ABCD﹣A1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则有

【答案】cos2α+cos2β+cos2γ=2
【解析】解:我们将平面中的两维性质,类比推断到空间中的三维性质.
由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,
则有cos2α+cos2β=1,
我们根据长方体性质可以类比推断出空间性质,
∵长方体ABCD﹣A1B1C1D1中,
对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,
∴cosα= ,cosβ= ,cosγ=
∴cos2α+cos2β+cos2γ
= =2.
所以答案是:cos2α+cos2β+cos2γ=2.

【考点精析】认真审题,首先需要了解类比推理(根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网