题目内容
【题目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(1)若 ∥ ,求x的值;
(2)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.
【答案】
(1)解:∵ =(cosx,sinx), =(3,﹣ ), ∥ ,
∴﹣ cosx=3sinx,
∴tanx=﹣ ,
∵x∈[0,π],
∴x= ,
(2)解:f(x)= =3cosx﹣ sinx=2 ( cosx﹣ sinx)=2 cos(x+ ),
∵x∈[0,π],
∴x+ ∈[ , ],
∴﹣1≤cos(x+ )≤ ,
当x=0时,f(x)有最大值,最大值3,
当x= 时,f(x)有最小值,最小值﹣2 .
【解析】(1)先由 //及同角三角函数的基本关系可得tanx,再利用x∈[0,π]可得x的值;(2)先由数量积的坐标公式和辅助角公式可得f(x)=2 cos(x+ ),再由x的取值范围]可得x+ 的取值范围,进而可得cos(x+ )的取值范围,从而可得f(x)的最大值和最小值以及对应的x的值.
练习册系列答案
相关题目
【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销售量 (万件) | 3 | 6 | 4 | 7 | 8 |
利润 (万元) | 19 | 34 | 26 | 41 | 46 |
(1)从这五个月的利润中任选2个,分别记为, ,求事件“, 均不小于30”的概率;
(2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想.参考公式: .