题目内容
在平面直角坐标系xOy中,已知对于任意实数k,直线(k+1)x+(k-
)y-(3k+
)=0恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+
.
(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:x2+y2=r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.
(1)+y2=1.(2)直线l1与圆O相交,直线l2与圆O相离.
解析

练习册系列答案
相关题目