题目内容
1.已知数列{an}满足a1=2,nan+(n+1)an-1=0,x∈N*,且n≥2,则数列{$\frac{{a}_{n}}{(2n+1)(2n+3)}$}的前10项和为( )A. | $\frac{5}{69}$ | B. | $\frac{10}{69}$ | C. | $\frac{20}{69}$ | D. | $\frac{25}{69}$ |
分析 数列{an}满足a1=2,nan+(n+1)an-1=0,n∈N*,且n≥2,可得$\frac{{a}_{n}}{{a}_{n-1}}=-\frac{n+1}{n}$.利用“累乘求积”可得:an=(-1)n-1•(n+1).$\frac{{a}_{n}}{(2n+1)(2n+3)}$=$(-1)^{n-1}•\frac{1}{4}(\frac{1}{2n+1}+\frac{1}{2n+3})$.再利用“裂项求和”即可得出.
解答 解:数列{an}满足a1=2,nan+(n+1)an-1=0,n∈N*,且n≥2,
∴$\frac{{a}_{n}}{{a}_{n-1}}=-\frac{n+1}{n}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1
=(-1)n-1•$\frac{n+1}{n}$$•\frac{n}{n-1}$•…•$\frac{4}{3}$•$\frac{3}{2}$•2
=(-1)n-1•(n+1).
∴$\frac{{a}_{n}}{(2n+1)(2n+3)}$=$(-1)^{n-1}•\frac{1}{4}(\frac{1}{2n+1}+\frac{1}{2n+3})$.
∴数列{$\frac{{a}_{n}}{(2n+1)(2n+3)}$}的前10项和=$\frac{1}{4}$$[(\frac{1}{3}+\frac{1}{5})-(\frac{1}{5}+\frac{1}{7})$+…+$(\frac{1}{19}+\frac{1}{21})$-$(\frac{1}{21}+\frac{1}{23})]$
=$\frac{1}{4}(\frac{1}{3}-\frac{1}{23})$
=$\frac{5}{69}$.
故选:A.
点评 本题考查了“累乘求积”、“裂项求和”方法,考查了变形能力,考查了推理能力与计算能力,属于中档题.
A. | (1,2) | B. | (1,2] | C. | [-1,1) | D. | (-1,1) |
A. | R | B. | x1<x<x2 | C. | x<x1或x>x2 | D. | 无解 |
A. | -$\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |